

Aligeramiento de vehículos y aeronaves mediante nanomateriales

Materiales para una mejor defensa TALLER ORGANIZADO POR LA ACADEMIA DE LAS CIENCIAS Y ARTES MILITARES (ACAMI) E IMDEA MATERIALES

> Dr Juan J. Vilatela Juanjose.vilatela@imdea.org

5 diciembre 2024

Dr Juan José Vilatela Investigador en IMDEA Materiales <u>https://www.materials.imdea.org/groups/mng/</u> @MNGMaterials

Encargado de proyectos de I+D industriales del sector transporte (aviónica, automoción, aeronáutica) con empresas reconocidas del sector (Toyota, Airbus, RockwellCollins, Shell)

Proyectos financiados por el ejército y fuerza aérea de EEUU

CTO de <u>Floatech</u>, empresa fabricante de electrodos nanoestructurados

Profesor asociado: UC3M, Máster Materiales, Grado Ing. (Ciencia de Materiales, Física) UPM, Máster Materiales, Máster Compuestos Airbus

Discover Nano

SPRINGER NATURE Link

Find a journal Publish with us Track your research Q Search

Home > Nanotechnology for Defence Applications > Chapter Historical Perspective of Materials and Contemporary Warfare Technologies

Nanotechnology for Defence Applications

Aligeramiento a través de:

- 1) Baterías de nueva generación
- 2) Conductores eléctricos supermetálicos
- 3) Materiales estructurales para balística
- 4) Apantallamiento electromagnético y emisores de campo para guerra electrónica
- 5) Sensores químicos textiles

¿Cuál es el más importante de los nanomateriales usados en la actualidad?

Examples of industrial facilities for nanomaterials production

a) Zeon Corporation plant in Japan; b) 1000 tons per year plant facilities of CNT arrays developed by Tsinghua University (China) [19]; c) LG Chem's Yeosu Plant (South Korea) for 2000 ton per reactor d) Graphene producer Avanzare.

Annual production is 10 000 tons per year, growing at about 20% CAGR

¿Dónde se usan?

Background: battery electrode and cell assembly

Battery

Scheme of a single cell unit

Component breakdown in LIB cell

Specific energy targets from material to pack level

	Wh/kg
Material level	750
Electrode level	650
Cell level	350
Battery level	210

Specific energy,

(b) Specific energy targets for automotive applications from material to pack level.

What are the limitations to reduce the weight of auxiliary elements in the cell?

Component breakdown in LIB cell

What are the limitations to reduce the weight of auxiliary elements?

Limitations on electrode thickness

Cracking in Drying Colloidal Films Karnail B. Singh and Mahesh S. Tirumkudulu Phys. Rev. Lett. 98, 218302 –2007

Critical crack thickness (CCT),
$$h_{max} = 0.41 \sqrt{\frac{GMV_f R^3}{2\gamma}}$$

FIG. 3 (color online). The measured critical thickness vs the characteristic scale, $\frac{GM\phi_{rep}R^3}{2\gamma}$. The data points are for films of acrylic [\blacksquare , G = 0.8 GPa, 2R = 82, 133, 206, and 353 nm, and $\phi_{rep}(M) = 0.65(6.7)$, 0.66(6.8), 0.68(7.0), and 0.67(6.9), respectively], styrene-butadiene [\bigcirc , G = 1 GPa, 2R = 250 nm, and $\phi_{rep}(M) = 0.64(6.6)$], silica [\blacktriangle , G = 31 GPa, 2R = 330, and 22 nm, and $\phi_{rep}(M) = 0.60(6.1)$ for both], alumina [8] [\bigcirc , G = 156 GPa, 2R = 230, 379, 458, and 489 nm, and $\phi_{rep}(M) = 0.60(6.1)$ for all], polystyrene [8] [\bigstar , G = 1.6 GPa, 2R = 300 nm, and $\phi_{rep}(M) = 0.60(6.1)$], and zirconia [8] [*, G = 81 GPa, 2R = 200 nm, and $\phi_{rep}(M) = 0.60(6.1)$]. Here the value of surface tension, γ , is taken as 0.072 N/m for all the cases. The solid line is a power law with an exponent 1/2 and the multiplying coefficient is obtained via regression. The inset plots the same data in the nondimensional form.

Limitations on electrode thickness

High areal capacity battery electrodes enabled by segregated nanotube networks. Nat Energy 4, 560–567 (2019). https://doi.org/10.1038/s41560-019-0398-y

Limitations on electrode thickness

~800 µm

500 µm

New generation of batteries

Today

Background: battery basics

E= V X Q

$$V_{cell} = V_{cathode} - V_{anode}$$

Consider an LFP cathode-graphite anode battery:

 $V_{cell} = 3.55 - (0.05) = 3.5V$

Q/m = 300 mAh/g

Rough estimate of energy density

$$E_s \approx \frac{1}{2} * \frac{Q}{m} * V_{cell} = 350 \text{ Wh/kg}$$

Compare to today's SoA automotive EV Battery (250 Wh/kg)

Background: battery basics

E= V X Q, but Q is a function of charge rate

 $V_{cell} = V_{cathode} - V_{anode}$

Consider an LFP cathode-graphite anode battery:

 $V_{cell} = 3.55 - (0.05) = 3.0V$

Q/m = 300 mAh/g

Rough estimate of energy density

$$E_s \approx \frac{1}{2} * \frac{Q}{m} * V_{cell} = 300 \text{ Wh/kg}$$

Compare to today's SoA automotive EV Battery (250 Wh/kg)

Background: battery basics

Two main sources of limitations in energy density realtive to our theoretical estimate: various resistances and device constraints.

Figure 9. Initial voltage profiles for a 45 mAh NMC622/Gr pouch cell at C/20, C/10, C/5, C/2, IC, and 2C discharge rate between 3 and 4.2 V utilizing electrodes with 3.3 mAh/cm² available areal capacities. The charge rates were symmetric to discharge until a maximum of C/3 rate. A voltage hold trickle charged the cell at 4.2 V until the measured current was less than that corresponding to C/20.

Capacity is a function of current density

$$Q_{electrode} = Q_{electrode}(J)$$

The real energy density normalised by active materials is

$$E_{s,am} \approx \frac{1}{2} * \frac{1}{m} \int_0^Q V_{cell} * dQ$$

Consider the case of 2C (charging in 30 min):

$$E_{s,am} \approx \frac{1}{2} * \frac{1}{2} * \frac{0.075Ah}{kg} * 4V = 75Wh/kg$$

Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes November 2015Journal of The Electrochemical Society 163(2):A138-A149

Comparison of electrodes with different nanocarbons

Electrodes of lithium–nickel–manganese–cobalt–oxide (NMC) with different nanocarbons and mass fractions

Comparison of electrodes of NMC with different nanocarbons

New generation of batteries

Today

New generation of batteries

Energy density X 2 compared to legacy batteries (400 – 500 Wh/kg)

EV with 1000km drive range

Charge time below 10s(10 - 80%)

Cutting-Edge SiMaxx[™] Silicon Anode Safe Cells are Expected to Double the Energy Density of Existing Solutions and Significantly Extend Mission Time for Soldiers

FREMONT, Calif. – May 09, 2024 – Amprius Technologies, Inc. ("Amprius" or the "Company") (NYSE: AMPD), a leader in next-generation lithium-ion batteries with its Silicon Anode Platform, today announced it will supply its state-of-the-art SiMaxx" safe cells to complete the development and qualification for the U.S. Army's next-generation Wearable Battery pack.

From plant to pack

Cables eléctricos y escudos balísiticos nanoestructurados

(A)

Motivation: properties of nanomaterials

Example: Graphene and CNTs What is the origin of their outstanding mechanical properties?

40

20

1µm

1200 -10

800

400

Ű0

Load (nN)

Yu et al. Science 287, 637 (2000)

"Nanomaterials" assembly into macroscopic materials

1D nanoparticle (nanomer)

Engineering material (nanomeric material)

Macroscopic properties depend on assembly and microstructure

Synthesis by floating catalyst CVD

Looking up into the reactor

Continuous spinning of 1km

Reguero et al, Chem Mater, 26, 3550 2014

Synthesis by floating catalyst CVD

alcohol, S, Fe

Looking up into the reactor

Continuous spinning of 1km

Reguero et al, Chem Mater, 26, 3550 2014

Synthesis by floating catalyst CVD

Looking up into the reactor

Continuous spinning of 1km

Reguero et al, Chem Mater, 26, 3550 2014

Classification of macromaterials of nanomaterials

"Product spectra, properties, performances and market applications of carbon materials from hydrocarbons cracking", Chapter in Turquoise hydrogen: an effective pathway to decarbonization and value added carbon materials, 2023

Comparison to conventional materials

Property $\propto V_f^{\alpha}$

 α = 1.9 modulus; 1.7 strength, 2.7 conductivity

Value at scale, increases from 0.50 to 50 EUR/kg from fillers (CB) to fibres (CF)

"Product spectra, properties, performances and market applications of carbon materials from hydrocarbons cracking", Chapter in Turquoise hydrogen: an effective pathway to decarbonization and value added carbon materials, 2023

Conductores supermetálicos: con conductividad y peso en el rango de Cu y Al

Electrical conductors for electromobility

Motivation for new conductors for electrification of transport

Increasing need for conductors in emerging aircraft. a) Evolution of required electrical power in civil aircraft [118] and b) Historical data showing a linear increase in weight from electrical wiring and distribution / interconnection systems with installed consumer power

At the current rate of increase in electrical power, by 2035 aircraft would carry wiring weighing as much as an A320!

Can we make cables lighter than copper?

Cu

Properties of annealed LC-spun CNT fibres

Can we make cables lighter than copper? Yes, we can

Conductivity of all CNT cables produced this decade

Cu: 7.5 MS/m /density

CNT: 4.8 MS/m /density (2024) CNT: 8.3 MS/m / density (2025)

From lab to prototype

Nasa

Plasan, Israel

American Boronite Corporation

Perspective on weigth reduction in electric vehicles

28% weight reduction in battery

25% weight reduction in wiring of electric motor

20-50% weight reduction in the EMI layer

Thank you

Collaborators:

Carlos González Álvaro Ridruejo Johan Christensen Damien Tourret

Dani Granados (IMDEA Nanoscience)

Bon-Cheol Ku Jun Yeon Hwang (KIST)

Micah Green (Texas A&M)

Adam Boies (Cambridge)

European Research Council

Tensile properties of aligned fibres and sheets

CNT Fibre

Carbon Fibre

